
Learning curves of Gaussian process regression
with power-law priors and targets

Hui Jin

Department of Mathematics
University of California, Los Angeles

February 10, 2022

Joint work with Pradeep Banerjee and Guido Montúfar
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Gaussian Process

A Gaussian Process is a continuous stochastic process {Yx : x ∈ X} where

Yx1,...,xn = (Yx1 , . . . , Yxn)

is a multivariate Gaussian random variable.

Gaussian process GP(m, k) is completely defined by its mean function
m(x) and covariance function k(x, x′).

For every finite set of indices x1, . . . , xn, we have Yx1,...,xn ∼ N (mn,Kn),
where

mn = (m(x1), . . . ,m(xn))T , Kn =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)


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Gaussian Process Regression (GPR)

Goal: Learn a target function f : Ω 7→ R.

Training samples Dn = {(xi, yi)}ni=1 generated from an additive noise

model yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2

true) and xi
i.i.d.∼ X with pdf ρ(x).

The true distribution of (xi, yi) is q(x, y) = ρ(x)q(y|x), where
q(y|x) = N (y|f(x), σ2

true).

The prior distribution Π0 over f is defined as a zero-mean GP with
covariance function k : Ω× Ω→ R, i.e., f ∼ GP(0, k).

The posterior distribution over f given training data Dn is

dΠn(f |Dn) =
1

Z(Dn)

n∏
i=1

N (yi|f(xi), σ
2
model)dΠ0(f),

where Z(Dn) =
∫ ∏n

i=1N (yi|f(xi), σ
2
model)dΠ0(f) is the marginal

likelihood or model evidence and σmodel is the sample variance in GPR.

In practice, we do not know the exact value of σtrue and our choice of
σmodel can be different from σtrue.
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Generalization Error

The GP prior and the Gaussian noise assumption allows for exact
Bayesian inference.

The posterior is also a GP with mean and covariance

m̄(x) = Kxx(Kn + σ2
modelIn)−1y, x ∈ Ω

k̄(x, x′) = k(x, x′)−Kxx(Kn + σ2
modelIn)−1Kxx′ , x, x

′ ∈ Ω,

where Kxx = KT
xx = (k(x1, x), . . . , k(xn, x))

T
, x = (x1, . . . , xn)T ,

y = (y1, . . . , yn)T .

The Bayesian generalization error is KL divergence between true density
and predictive density pn(y|x,Dn) =

∫
N (y|f(x), σ2

model)dΠn(f |Dn),

G(Dn) :=

∫
q(x, y) log

q(y|x)

pn(y|x,Dn)
dxdy.

The excess mean squared error is

M(Dn) := E(xn+1,yn+1)(m̄(xn+1)− yn+1)2 − σ2
true

= Exn+1
(m̄(xn+1)− f(xn+1))2.
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Equivalence between GPR and Kernel Ridge Regression
(KRR)

The kernel ridge regression (KRR) estimator is the solution to the
optimization problem

f̂ = arg min
g∈Hk

1

n

n∑
i=1

(g (xi)− yi)2
+ λ‖g‖2Hk .

Hk is chosen to be an RKHS corresponding to kernel function k.

The solution is f̂(x) = KT
xx(Kn + nλIn)−1y.

The solution of KRR coincides with posterior mean function of GPR
when σ2

model = nλ [Kanagawa et al., 2018].
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Kernel Learning and Neural Networks

Training of infinite neural network is equivalent to kernel learning in some
circumstances [Lee et al., 2019, 2018].

Cho and Saul [2009] showed that arc-cosine kernel is the NNGP kernel of
an infinitely wide shallow ReLU network with two inputs and no biases in
the hidden layer.

Figure: CIFAR-10 test accuracy for finite and infinite networks, from Lee et al. [2020].
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Spectrum of Kernel and Eigenexpansion of Target Function

Consider the integral operator corresponding to kernel k:
Lk : L2(Ω, ρ) 7→ L2(Ω, ρ); (Lkf)(x) =

∫
Ω
k(x, s)f(s)dρ(s).

Let (φp(x))p≥1 denote the eigenfunctions of Lk and (λp)p≥1 the
corresponding positive eigenvalues with λ1 ≥ λ2 ≥ · · · > 0.

By Mercer’s theorem, k(x1, x2) =
∑∞
p=1 λpφp(x1)φp(x2).

The target f(x) can be decomposed into the orthonormal (φp(x))p≥1 and
its orthogonal complement as

f(x) =

∞∑
p=1

µpφp(x) + µ0φ0(x) ∈ L2(Ω, ρ),

where µ = (µ0, µ1, . . . , µp, . . .)
T are the coefficients of the decomposition,

and φ0(x) satisfies ‖φ0(x)‖2 = 1 and φ0(x) ∈ {φp(x) : p ≥ 1}⊥.

Let Λ = diag{0, λ1, . . . , λp, . . .} and µ = (µ0, µ1, . . . , µp, . . .)
T . We show

that the generalization error mainly depends on Λ and µ.
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Assumptions

(Capacity condition) The eigenvalues (λp)p≥1 follow a power law with
α > 1:

Cλp
−α ≤ λp ≤ Cλp−α.

(Source condition) The coefficients (µp)p≥1 of the decomposition of the
target function follow a power law with β > 1

2 :

|µp| ≤ Cµp−β and |µpi | ≥ Cµpi−β , ∀i ≥ 1,

where {pi}i≥1 is an increasing integer sequence such that
supi≥1 (pi+1 − pi) <∞.

The eigenfunctions (φp(x))p≥1 satisfy ‖φp‖∞ ≤ Cφpτ , ∀p ≥ 1 with
τ < α−1

2 .
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Assumptions

Related to the effective dimension of the problem and the difficulty of
learning the target function [Caponnetto and De Vito, 2007, Blanchard
and Mücke, 2018].

Velikanov and Yarotsky [2021]:
I Derived the exact value of α when the kernel function has a homogeneous

singularity on its diagonal, e.g., the arc-cosine kernel.
I Gave examples of functions for which source condition is satisfied, such as

functions that have a bounded support with smooth boundary and are
smooth on the interior of this support, and derived the corresponding β.

Ronen et al. [2019] showed that for inputs distributed uniformly on a
hypersphere, the eigenfunctions of the arc-cosine kernel are spherical
harmonics and the eigenvalues follow a power-law decay.
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Main result

Theorem (Asymptotics of the Bayesian generalization error, µ0 = 0)

Assume that µ0 = 0 and σ2
model = σ2

true = σ2 = Θ(nt) where 1− α
1+2τ < t < 1.

Then with probability of at least 1− n−q over sample inputs (xi)
n
i=1 where

0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 , the expectation of the Bayesian generalization

error w.r.t. the noise ε has the asymptotic behavior:

EεG(Dn) = 1+o(1)
2σ2

(
Tr(I + n

σ2 Λ)−1Λ− ‖Λ 1
2 (I + n

σ2 Λ)−1‖2F + ‖(I + n
σ2 Λ)−1µ‖22

)
= 1

σ2 Θ(nmax{ (1−α)(1−t)
α ,

(1−2β)(1−t)
α }).

The exponent (1−α)(1−t)
α captures the rate at which the model suppresses

the noise.

The exponent (1−2β)(1−t)
α captures the rate at which the model learns the

target function.

Sollich and Halees [2002] obtained a corresponding result for the
particular case when f ∼ GP(0, k) and t = 0.
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Main result

Theorem (Asymptotics of the Bayesian generalization error, µ0 > 0)

Assume that µ0 > 0 and σ2
model = σ2

true = σ2 = Θ(nt) where 1− α
1+2τ < t < 1.

Then with probability of at least 1− n−q over sample inputs (xi)
n
i=1, where

0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 , the expectation of the Bayesian generalization

error w.r.t. the noise ε has the asymptotic behavior:

EεG(Dn) =
1

2σ2
µ2

0 + o(1).

In general, if µ0 > 0, the generalization error asymptotes to a constant.

Hence, GPR can only learn functions within the span of eigenfunctions.
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Main result

Theorem (Asymptotics of excess mean squared error)

Assume σ2
model = Θ(nt) where 1− α

1+2τ < t < 1. Then with probability of at

least 1− n−q over sample inputs (xi)
n
i=1, where 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)

4α2 ,
the excess mean squared error has the asymptotic:

EεM(Dn) = (1 + o(1))

[
σ2

true

σ2
model

(
Tr(I + n

σ2
model

Λ)−1Λ− ‖Λ1/2(I + n
σ2

model
Λ)−1‖2F

)
+ ‖(I + n

σ2
model

Λ)−1µ‖22
]

= Θ

(
max{σ2

truen
1−α−t
α , n

(1−2β)(1−t)
α }

)
when µ0 = 0, and EεM(Dn) = µ2

0 + o(1), when µ0 > 0.

In this result σ2
model and σ2

true can be different.

The asymptotic of excess mean squared error is the same as Bayesian
generalization error when σ2

model = σ2
true.
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Related results

By leveraging the equivalence between GPR and KRR, we can get the
same statement for the generalization error of KRR.

Cui et al. [2021] derived similar asymptotics for KRR with Gaussian

design, where Λ
1/2
R (φ1(x), . . . , φR(x))) is assumed to follow a Gaussian

distribution N (0,ΛR).
I Our assumption that the eigenfunctions are bounded by power functions is

more general.
I Our result is high probability result and is stronger than the expectation

result of Cui et al. [2021].

In the noiseless setting (σtrue = 0) with constant regularization (t = 0),
Bordelon et al. [2020] showed that the mean squared error behaves as

Θ(n
1−2β
α ).

I Our result is applicable to noisy data and non-constant regularization.
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Experiments
Let the input x be uniformly distributed on a unit circle, i.e., Ω = S1 and
ρ = U(S1).

kernel function α activation function bias

k
(1)

w/o bias
1
π

(sinψ + (π − ψ) cosψ) 4 max{0, x} no

k
(1)
w bias

1
π

(sin ψ̄ + (π − ψ̄) cos ψ̄) 4 max{0, x} yes

k
(2)

w/o bias
1
π

(3 sinψ cosψ + (π − ψ)(1 + 2 cos2 ψ)) 6 (max{0, x})2 no

k
(2)
w bias

1
π

(3 sin ψ̄ cos ψ̄ + (π − ψ̄)(1 + 2 cos2 ψ̄)) 6 (max{0, x})2 yes

k
(0)

w/o bias
1
π

(sinψ + (π − ψ) cosψ) 2 1
2
(1 + sign(x)) no

k
(0)
w bias

1
π

(sin ψ̄ + (π − ψ) cos ψ̄) 2 1
2
(1 + sign(x)) yes

Table: The different kernel functions of infinite shallow networks, their values of α,
the corresponding neural network activation function. Here ψ = arccos (〈x1, x2〉) and
ψ̄ = arccos

(
1
2
(〈x1, x2〉+ 1)

)
.

Kernels corresponding to smoother activation function have faster decay
rate of the eigenvalues.

It means that networks with smoother activation function are better at
compressing the noise, but less capable of fitting functions.
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Experiments
function value β µ0 EεG(Dn)

f1 cos 2θ +∞ 0 Θ(n−3/4)

f2 θ2 2 > 0 Θ(1)

f3 (|θ| − π/2)2 2 0 Θ(n−3/4)

f4

{
π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n−1/4)

Table: Target functions used in the experiments for the first order arc-cosine kernel
without bias k

(1)

w/o bias, their values of β and µ0, and theoretical rates for the
Bayesian generalization error from our theorems.

Figure: Bayesian generalization error for GPR with the kernel k
(1)

w/o bias and the target
functions. The orange curves show the linear regression fit for the experimental
values (in blue) of the log Bayesian generalization error as a function of log n.

Hui Jin (UCLA) Learning curves of GPR February 10, 2022 15 / 21



Experiments

Figure: Experiment on the first order arc-cosine kernel without bias k
(1)

w/o bias. Blue

curve is the target function f(θ) = (|θ| − π/2)2. Orange curve is the posterior mean
and blue points are training samples.
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Experiments
function value β µ0 EεG(Dn)

f1 cos 2θ +∞ 0 Θ(n−3/4)

f2 θ2 2 0 Θ(n−3/4)

f3 (|θ| − π/2)2 2 0 Θ(n−3/4)

f4

{
π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n−1/4)

Table: Target functions used in the experiments for the first order arc-cosine kernel
with bias, k

(1)
w bias, their values of β and µ0, and theoretical rates for the Bayesian

generalization error from our theorems.

Figure: Bayesian generalization error for GPR with kernel k
(1)
w bias and the target

functions. The orange curves show the linear regression fit for the experimental
values (in blue) of the log Bayesian generalization error as a function of log n.

Hui Jin (UCLA) Learning curves of GPR February 10, 2022 17 / 21



Experiments
function value β µ0 EεG(Dn)

f1 cos 2θ +∞ 0 Θ(n−5/6)

f2 sign(θ) 1 0 Θ(n−1/6)

f3 π/2− |θ| 2 0 Θ(n−1/2)

f4

{
π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 > 0 Θ(1)

Table: Target functions used in the experiments for the second order arc-cosine
kernel without bias, k

(2)

w/o bias, their values of β and µ0, and theoretical rates for the
Bayesian generalization error from our theorems.

Figure: Bayesian generalization error for GPR with kernel k
(2)

w/o bias and the target
functions.
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Experiments
function value β µ0 EεG(Dn)

f1 cos 2θ +∞ 0 Θ(n−5/6)

f2 θ2 2 0 Θ(n−1/2)

f3 (|θ| − π/2)2 2 0 Θ(n−1/2)

f4

{
π/2− θ, θ ∈ [0, π)

−π/2− θ, θ ∈ [−π, 0)
1 0 Θ(n−1/6)

Table: Target functions used in the experiments for the second order arc-cosine
kernel with bias, k

(2)
w bias, their values of β and µ0, and theoretical rates for the

Bayesian generalization error from our theorems.

Figure: Bayesian generalization error for GPR with kernel k
(2)
w bias and the target

functions.
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Conclusion and Future Work

1 Described the learning curves for GPR for the case that the kernel and
target function follow a power law.

I This setting is frequently encountered in kernel learning literatures.
I The result can be applied to infinite neural networks.

2 In future work, it will be interesting to estimate the values of α and β for
some speific settings.

I The Neural Tangent Kernel (NTK) of deep fully-connected or
convolutional neural networks.

I Analyze the effect of data distribution.
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